

Content Protection for
Recordable Media

Specification

Introduction and
Common Cryptographic Elements

Intel Corporation

International Business Machines Corporation

Panasonic Corporation

Toshiba Corporation

Revision 1.1

December 15, 2010

CPRM Specification: Introduction and Common Cryptographic Elements, Revision 1.1

Page ii 4C Entity, LLC

This page is intentionally left blank.

CPRM Specification: Introduction and Common Cryptographic Elements, Revision 1.1

 4C Entity, LLC Page iii

Preface

Notice
THIS DOCUMENT IS PROVIDED "AS IS" WITH NO WARRANTIES WHATSOEVER, INCLUDING
ANY WARRANTY OF MERCHANTABILITY, NONINFRINGEMENT, FITNESS FOR ANY
PARTICULAR PURPOSE, OR ANY WARRANTY OTHERWISE ARISING OUT OF ANY PROPOSAL,
SPECIFICATION OR SAMPLE. IBM, Intel, Panasonic, and Toshiba disclaim all liability, including liability
for infringement of any proprietary rights, relating to use of information in this specification. No license,
express or implied, by estoppel or otherwise, to any intellectual property rights are granted herein.

Copyright © 1999-2010 by International Business Machines Corporation, Intel Corporation, Panasonic
Corporation, and Toshiba Corporation. Third-party brands and names are the property of their respective
owners.

Intellectual Property
Implementation of this specification requires license from the 4C Entity, LLC. Note that use of the AES-based
technology also requires execution of an addendum to the 4C license agreement.

Contact Information
Please address inquiries, feedback, and licensing requests to the 4C Entity, LLC:

• Licensing inquiries and requests should be addressed to 4C-Services@4Centity.com.

• Feedback on this specification should be addressed to 4C-Services@4Centity.com.

The URL for the 4C Entity, LLC web site is http://www.4Centity.com.

CPRM Specification: Introduction and Common Cryptographic Elements, Revision 1.1

Page iv 4C Entity, LLC

This page is intentionally left blank.

CPRM Specification: Introduction and Common Cryptographic Elements, Revision 1.1

 4C Entity, LLC Page v

Table of Contents

Notice .. iii

Intellectual Property .. iii

Contact Information .. iii

CHAPTER 1 INTRODUCTION ... 1-1

1. INTRODUCTION .. 1-1

1.1 Purpose and Scope ... 1-1

1.2 Overview ... 1-1

1.3 Organization of this Document ... 1-2

1.4 References .. 1-3

1.5 Future Directions ... 1-3

1.6 Notation .. 1-3
1.6.1 Numerical Values .. 1-3
1.6.2 Bit and Byte Ordering .. 1-3
1.6.3 Operations .. 1-4

1.7 Abbreviations and Acronyms ... 1-4

CHAPTER 2 CPRM COMMON CRYPTOGRAPHIC FUNCTIONS................... 1-1

2. INTRODUCTION .. 2-1

2.1 C2 Block Cipher Algorithm .. 2-1
2.1.1 C2 Block Cipher in Electronic Codebook (ECB) Mode .. 2-1
2.1.2 C2 Block Cipher in Converted Cipher Block Chaining (C-CBC) Mode 2-1

2.2 C2 Hash Function .. 2-2

2.3 C2 One-way Function .. 2-3

2.4 Random Number Generators ... 2-3
2.4.1 C2 Random Number Generator ... 2-3
2.4.2 C2 Pseudorandom Number Generator ... 2-4

CPRM Specification: Introduction and Common Cryptographic Elements, Revision 1.1

Page vi 4C Entity, LLC

CHAPTER 3 CPRM COMMON CRYPTOGRAPHIC KEY MANAGEMENT 2-1

3. INTRODUCTION .. 3-1

3.1 Calculation of the Media Key (Km) .. 3-2
3.1.1 Device Keys ... 3-2
3.1.2 Media Key Block (MKB) .. 3-2

3.1.2.1 Verify Media Key Record .. 3-3
3.1.2.2 Calculate Media Key Record ... 3-4
3.1.2.3 Conditionally Calculate Media Key Record .. 3-5
3.1.2.4 End of Media Key Block Record ... 3-6

3.1.3 Media Key Block Extension .. 3-7
3.1.3.1 Writing an MKB Extension ... 3-7
3.1.3.2 Processing an Extended MKB ... 3-9

3.1.4 Pseudo-code for Processing a Media Key Block ... 3-9

3.2 Calculation of the Media Unique Key (Kmu) ... 3-12
3.2.1 Media Identifier (IDmedia) ... 3-12
3.2.2 Media Unique Key (Kmu) ... 3-12

CHAPTER 4 COMMON CRYPTOGRAPHIC FUNCTIONS FOR ENHANCED CPRM
 .. 3-1

4. INTRODUCTION .. 4-1

4.1 AES Block Cipher Algorithm ... 4-1
4.1.1 AES Block Cipher in Electronic Codebook (ECB) Mode ... 4-1
4.1.2 AES Block Cipher in Cipher Block Chaining (CBC) Mode .. 4-1
4.1.3 AES Block Cipher in Counter (CTR) Mode .. 4-2

4.2 AES Hash Function ... 4-2

4.3 AES One-way Function ... 4-4

4.4 Message Authentication Code (CMAC) .. 4-4

4.5 Random Number Generators ... 4-5
4.5.1 AES Random Number Generator .. 4-5
4.5.2 AES Pseudorandom Number Generator .. 4-6

CPRM Specification: Introduction and Common Cryptographic Elements, Revision 1.1

 4C Entity, LLC Page vii

List of Figures

Figure 1-1 – CPRM Illustrative Example ... 1-2

Figure 2-1 – C2 Hash Function .. 2-2

Figure 2-2 – C2 One-way Function .. 2-3

Figure 2-3 – C2 Random Number Generator ... 2-3

Figure 2-4 – C2 Pseudorandom Number Generator ... 2-4

Figure 3-1 – Common CPRM Cryptographic Key Management Procedure .. 3-1

Figure 3-2 – Calculation of Media Key from MKB and MKB Extension .. 3-7

Figure 4-1 – AES Hash Function .. 4-3

Figure 4-2 – AES One-way Function ... 4-4

Figure 4-3 – AES Random Number Generator .. 4-5

Figure 4-4 – AES Pseudorandom Number Generator .. 4-6

CPRM Specification: Introduction and Common Cryptographic Elements, Revision 1.1

Page viii 4C Entity, LLC

This page is intentionally left blank.

CPRM Specification: Introduction and Common Cryptographic Elements, Revision 1.1

 4C Entity, LLC Page ix

List of Tables

Table 2-1 – Examples of Padding Input Data ... 2-2

Table 3-1 – Common Cryptographic Key Management Elements ... 3-1

Table 3-2 – Verify Media Key Record Format .. 3-3

Table 3-3 – Calculate Media Key Record Format .. 3-4

Table 3-4 – Conditionally Calculate Media Key Record Format ... 3-5

Table 3-5 – End of Media Key Block Record Format ... 3-6

CPRM Specification: Introduction and Common Cryptographic Elements, Revision 1.1

Page x 4C Entity, LLC

This page is intentionally left blank.

CPRM Specification: Introduction and Common Cryptographic Elements, Revision 1.1

 4C Entity, LLC Page 1-1

Chapter 1
Introduction

1. Introduction

1.1 Purpose and Scope
The Content Protection for Recordable Media Specification (CPRM) defines a renewable method for protecting
content recorded on a number of physical media types. The specification is organized into several “books.”
This document, the Introduction and Common Cryptographic Elements book, provides a brief overview of
CPRM, and defines cryptographic procedures that are common among its different uses. Other books provide
additional details specific to using CPRM protection for different applications and media types. Other books of
the CPRM Specification available at or around the time of this publication are:

• DVD Book

• Portable ATA Storage Book

• SD Memory Card Book.

Books covering other media types are expected to be available in the future (see Section 1.5 below). CPRM is
an integral part of an overall system for protecting content against unauthorized copying, known as the Content
Protection System Architecture (see the corresponding reference in Section 1.4).

The use of this specification and access to the intellectual property and cryptographic materials required to
implement it will be the subject of a license. A license authority referred to as the 4C Entity, LLC is
responsible for establishing and administering the content protection system based in part on this specification.

1.2 Overview
The CPRM technology is designed to meet the following criteria:

• It meets the content owners’ requirements for robustness and system renewability.

• It is applicable for audio, video and other commercial content.

• It is equally suitable for implementation on PCs and CE devices.

• It is applicable to different media types.

The system is based on the following technical elements:

• Key management for interchangeable media

• Content encryption

• Media based renewability

Figure 1-1 shows a simplified illustrative example of how the system operates. The actual details of component
storage and cryptographic key management will vary with different types of DVD and other supported media,
as well as with different applications, as described in the other books of this specification.

Step 1a. The 4C Entity, LLC provides secret device keys to the device manufacturer for inclusion into each
device produced.

Step 1b. Media manufacturers place a Media Identifier and Media Key Block generated by the 4C Entity, LLC
on each piece of compliant media.

CPRM Specification: Introduction and Common Cryptographic Elements, Revision 1.1

Page 1-2 4C Entity, LLC

Step 2. When compliant media is placed within a compliant drive or player/recorder, a secret Media Key is
generated by the device using its secret keys and the Media Key Block stored on the media itself. The same
secret Media Key is generated regardless of which compliant device is used to access the media.

Step 3. Content stored on the media is encrypted/decrypted by a Content Key derived from a one-way function
of a secret Title Key and the copy control information (CCI) associated with the content. The Title Key is
encrypted and stored on the media using a key derived from a one-way function of the Media Key and Media
ID. Again, actual details of key management can vary among different applications, as described in the other
books of this specification.

Encrypted content using
Hash[Title Key, CCI] for key,
CCI
Encrypted Title Key using
Hash[Media Key, Media ID] for key

Media Key Block Media Key

Media ID

3 Recorded data

1b Read only data prerecorded by media
 manufacturer

Unrecorded area

Pre-embossed
lead-in

2 Device generates Media Key from
 Media Key Block and Device Keys

1a Device Keys given to device manufacturer
 by 4C Entity, LLC

Figure 1-1 – CPRM Illustrative Example

1.3 Organization of this Document
This document is organized as follows:

• Chapter 1 provides an introduction and overview of CPRM.

• Chapter 2 describes common CPRM cryptographic functions based on the C2 cipher algorithm.

• Chapter 3 describes a common CPRM cryptographic key management procedure, using a Media Key Block
and Media Identifier.

• Chapter 4 describes common CPRM enhanced cryptographic functions based on the AES cipher algorithm.

CPRM Specification: Introduction and Common Cryptographic Elements, Revision 1.1

 4C Entity, LLC Page 1-3

1.4 References
This specification shall be used in conjunction with the following publications. When the publications are
superceded by an approved revision, the revision shall apply.

4C Entity, LLC, CPRM License Agreement

4C Entity, LLC, C2 Block Cipher Specification, Revision 1.0

4C Entity, LLC, Content Protection System Architecture White Paper, Version 0.81

National Institute of Standards and Technology (NIST), Security Requirements for Cryptographic Modules,
FIPS Publication 140-1, April 14, 1982

Secure Digital Music Initiative (SDMI), SDMI Portable Device Specification Version 1.0

National Institute of Standards and Technology (NIST), Advanced Encryption Standard (AES), FIPS
Publication 197, November 26, 2001.

National Institute of Standards and Technology (NIST), A Statistical Test Suite for Random and Pseudorandom
Number Generators for Cryptographic Applications, NIST Special Publication 800-22 Revision 1a, April 2010

National Institute of Standards and Technology (NIST), Recommendation for Block Cipher Modes of Operation
Methods and Techniques, NIST Special Publication 800-38A, 2001 Edition, December 2001

National Institute of Standards and Technology (NIST), Recommendation for Block Cipher Modes of
Operation: The CMAC Mode for Authentication, NIST Special Publication 800-38B, May 2005

National Institute of Standards and Technology (NIST), Recommendation for Random Number Generation
Using Deterministic Random Bit Generators (Revised), NIST Special Publication 800-90, March 2007

1.5 Future Directions
With its robust cryptography, key management, and renewability mechanisms, it is expected that CPRM will
develop and expand, through additions to this specification, to address content protection for additional media
types, application formats, and usage models.

1.6 Notation

1.6.1 Numerical Values
This specification uses three different representations for numerical values. Decimal numbers are represented
without any special notation. Binary numbers are represented as a string of binary (0, 1) digits followed by a
subscript 2 (e.g., 10102). Hexadecimal numbers are represented as a string of hexadecimal (0..9, A..F) digits
followed by a subscript 16 (e.g., 3C216).

1.6.2 Bit and Byte Ordering
Certain data values or parts of data values are interpreted as an array of bits. Unless explicitly noted otherwise,
bit positions within an n-bit data value are numbered such that the least significant bit is numbered 0 and the
most significant bit is numbered n-1.

Unless explicitly noted otherwise, big-endian ordering is used for multiple-byte values, meaning that byte 0 is
the most significant byte.

CPRM Specification: Introduction and Common Cryptographic Elements, Revision 1.1

Page 1-4 4C Entity, LLC

1.6.3 Operations
The following notation will be used for bitwise and arithmetic operations:

[x]msb_z The most significant z bits of x.

[x]lsb_z The least significant z bits of x.

[x]y:z The inclusive range of bits between bit y and bit z in x.

~x Bit-wise inversion of x.

x || y Ordered concatenation of x and y.

x ⊕ y Bit-wise Exclusive-OR (XOR) of two strings x and y.

x + y Modular addition of two strings x and y.

x × y Multiplication of x and y.

x – y Subtraction of y from x.

x mod y The modulo of x by y.

The following assignment and relational operators will be used:

= Assignment

== Equal to

!= Not equal to

< Less than

> Greater than

<= Less than or equal to

>= Greater than or equal to

1.7 Abbreviations and Acronyms
The following is an alphabetical list of abbreviations and acronyms used in this document:

AES Advanced Encryption Standard

ATA AT Attachment

C-CBC Converted Cipher Block Chaining

C2 Cryptomeria Cipher

CBC Cipher Block Chaining

CCI Copy Control Information

CE Consumer Electronics

CMAC Cipher-based Message Authentication Code

CPRM Content Protection for Recordable Media

CTR Counter

DVD Digital Versatile Disc

ECB Electronic Codebook

FIPS Federal Information Processing Standards

ID Identifier

CPRM Specification: Introduction and Common Cryptographic Elements, Revision 1.1

 4C Entity, LLC Page 1-5

LLC Limited Liability Company

lsb Least Significant Bit

MAC Message Authentication Code

MKB Media Key Block

msb Most Significant Bit

PC Personal Computer

SDMI Secure Digital Music Initiative

SHA Secure Hashing Algorithm

XOR Exclusive-OR

CPRM Specification: Introduction and Common Cryptographic Elements, Revision 1.1

 4C Entity, LLC Page 2-1

Chapter 2
CPRM Common Cryptographic Functions

2. Introduction
This chapter describes common cryptographic functions that are used by CPRM for various applications and
media types. The functions are described here in isolation; their specific uses as part of CPRM encryption, key
management, and renewability mechanisms are described elsewhere in this document, as well as in the other
books of this specification.

2.1 C2 Block Cipher Algorithm
Common cryptographic functions used for CPRM are based on the C2 block cipher. A description of the C2
block cipher algorithm is provided in a separate specification, referred to in Section 1.4. That specification
describes two basic operational modes of the C2 cipher: Electronic Codebook (ECB) mode and Converted
Cipher Block Chaining (C-CBC) mode. The remainder of this section describes notation that will be used in
this document and in other books of this specification to refer to those two modes of operation.

2.1.1 C2 Block Cipher in Electronic Codebook (ECB) Mode
In this document and in other books of this specification, encryption with the C2 cipher in Electronic Codebook
(ECB) mode is represented by the function

 C2_E(k, d)

 where k is a 56-bit key, d is 64-bit data value to be encrypted, and C2_E returns the 64-bit result.

Decryption using the C2 cipher in ECB mode is represented by the function

 C2_D(k, d)

 where k is a 56-bit key, d is a 64-bit data value to be decrypted, and C2_D returns the 64-bit result.

2.1.2 C2 Block Cipher in Converted Cipher Block Chaining (C-CBC) Mode
The C2 cipher is used in Converted Cipher Block Chaining (C-CBC) mode for encryption and decryption of
content protected by CPRM. In this document and in other books of this specification, encryption with the C2
cipher in C-CBC mode is represented by the function

 C2_ECBC(k, d)

where k is a 56-bit key, d is a frame of data to be encrypted, and C2_ECBC returns the encrypted
frame.

Decryption using the C2 cipher in C-CBC mode is represented by the function

 C2_DCBC(k, d)

where k is a 56-bit key, d is a frame of data to be decrypted, and C2_DCBC returns the decrypted
frame.

The size of the frame of data to be encrypted or decrypted (i.e. how often a new C-CBC cipher chain is started)
depends on the particular application format, and is defined for each in the corresponding books of this
specification.

CPRM Specification: Introduction and Common Cryptographic Elements, Revision 1.1

Page 2-2 4C Entity, LLC

2.2 C2 Hash Function
CPRM uses a hashing procedure based on the C2 encryption algorithm. This procedure is called the C2 Hash
Function, and is represented by the function

 C2_H(d)

 where d is input data of arbitrary length, and C2_H returns the 64-bit result.

For the purpose of calculating the hash value for input data d, d is padded as follows. Padded data d’ is formed
by first always appending a single “1” bit to d, and then appending from zero to sixty-three “0” bits as needed to
make the total length of d’ a multiple of 64 bits. Table 2-1 shows examples with input data d of various lengths.

Table 2-1 – Examples of Padding Input Data

Length of input data d (in bits) Formation of padded data d’
126 d’ = d || 102
127 d’ = d || 12
128 d’ = d || 800000000000000016

The padded data d’ is divided into n 64-bit blocks, represented as d1’,d2’,…dn’, which are used in the hashing
procedure as shown in Figure 2-1.

C2_EC2_Eff
56

ki

64

64

64

hi

di’

64
hi-1

Figure 2-1 – C2 Hash Function

A conversion function f is defined as

 f(x) = [x]lsb_56

 where x is a 64-bit input data value.

A 64-bit fixed initial value h0 is provided by the 4C Entity, LLC to licensees of CPRM for media types and
applications where the C2 Hash Function is used.

The following are calculated iteratively for i from 1 to n:

 ki = f(hi-1)

and

 hi = C2_E(ki, di’) ⊕ di’.

The value hn is the final result of the hash, i.e. C2_H(d) = hn.

CPRM Specification: Introduction and Common Cryptographic Elements, Revision 1.1

 4C Entity, LLC Page 2-3

2.3 C2 One-way Function
CPRM uses a cryptographic one-way function based on the C2 encryption algorithm. This function is called the
C2 One-way Function, and is represented by

 C2_G(d1, d2)

 where d1 is a 56-bit input data value, d2 is a 64-bit input data value, and C2_G returns the 64-bit result.

Figure 2-2 depicts the one-way function.

C2_EC2_E

64

64

64

C2_G(d1,d2)

d2

56
d1

Figure 2-2 – C2 One-way Function

The one-way function result is calculated as

 C2_G(d1, d2) = C2_E(d1, d2) ⊕ d2.

2.4 Random Number Generators
This section describes a random number generator and a pseudorandom number generator for generating
random value up to 64-bit, both of which are based on the C2 One-way Function. Unless explicitly noted
otherwise, one of these designs, or a design of equal or higher quality that passes the tests described in FIPS-
140 section 4.11.1 or designs described in Section 4.5 shall be used for CPRM. Note that for generating random
value more than 64-bit, random number generators described in Section 4.5 shall be used.

2.4.1 C2 Random Number Generator
Figure 2-3 shows the C2 Random Number Generator, which is a random number generator based on the C2
One-way Function that uses a non-correlated input in every cycle.

C2_GC2_G

64

non-volatile
seed register

64

k

si

Initial value (s0) loaded
during manufacture

56

64

ri

ei

ff
56

ki

1

Figure 2-3 – C2 Random Number Generator

CPRM Specification: Introduction and Common Cryptographic Elements, Revision 1.1

Page 2-4 4C Entity, LLC

During manufacture, an arbitrary 64-bit initial value s0 is loaded into the non-volatile seed register. Thereafter,
64-bit random numbers ri (i=0,1,…) are generated as

 ri = C2_G(ki, si),

 where ki = f(k, ei)

and si+1 = ri.

The function f(k, ei) returns the value k after its least significant bit is exclusive-ORed with ei.

The fixed input k is a 56-bit value generated individually for each device by a physically random process, and
may be taken from the random number provided for each device by the 4C Entity, LLC. The 1-bit value ei is
taken from a source of run-time entropy, such as the least significant bit of a free-running counter having a
frequency significantly higher than the random number sample rate.

Unless explicitly noted otherwise, a device shall treat its k value as Highly Confidential, as defined in the
CPRM License Agreement.

2.4.2 C2 Pseudorandom Number Generator
Figure 2-4 shows the C2 Pseudorandom Number Generator, which is a pseudorandom number generator based
on the C2 One-way Function that generates an output sequence with a period of length 264.

C2_GC2_G

64

non-volatile
seed register

64

k

si

Initial value (s0) loaded
during manufacture

56

64

ri

++ 1

64

Figure 2-4 – C2 Pseudorandom Number Generator

During manufacture, an arbitrary 64-bit initial value s0 is loaded into the non-volatile seed register. Thereafter,
64-bit random numbers ri (i=0,1,…) are generated as

 ri = C2_G(k, si)

 where si+1 = [si + 1]lsb_64.

The fixed input k is a 56-bit value generated individually for each device by a physically random process, and
may be taken from the random number provided for each device by the 4C Entity, LLC. Unless explicitly noted
otherwise, a device shall treat its k value as Highly Confidential, as defined in the CPRM License Agreement.

CPRM Specification: Introduction and Common Cryptographic Elements, Revision 1.1

 4C Entity, LLC Page 3-1

Chapter 3
CPRM Common Cryptographic

Key Management
3. Introduction
This chapter describes a CPRM common cryptographic key management procedure, depicted in Figure 3-1,
which uses a Media Key Block to provide renewability, and a Media Identifier for individual media
identification. The procedure is described here in isolation; its use as part of CPRM for different media types
and applications is described in the other books of this specification.

Process_MKB

Device Keys

C2_G

Media Key

Media Unique Key

MKB

Media Identifier

Figure 3-1 – Common CPRM Cryptographic Key Management Procedure

• Device Keys (Kd_0,Kd_1,…,Kd_n-1) are used to decrypt one or more elements of a Media Key Block (MKB),
in order to extract a secret Media Key (Km).

• Km and a Media Identifier (IDmedia) are combined, using the C2 One-way Function, to produce a Media
Unique Key (Kmu).

Table 3-1 lists the elements involved in this process, along with their sizes.

Table 3-1 – Common Cryptographic Key Management Elements

Key or Variable Size
Device Keys (Kd_0,Kd_1,…,Kd_n-1) 56 bits each
Media Key Block (MKB) Variable, multiple of 4 bytes
Media Key (Km) 56 bits
Media Identifier (IDmedia) 64 bits
Media Unique Key (Kmu) 56 bits

The remainder of this section describes this common cryptographic key management procedure in detail.

CPRM Specification: Introduction and Common Cryptographic Elements, Revision 1.1

Page 3-2 4C Entity, LLC

3.1 Calculation of the Media Key (Km)

3.1.1 Device Keys
Each CPRM compliant device is given a set of secret Device Keys when manufactured. These keys are
provided by the 4C Entity, LLC, and are for use in processing the MKB to calculate Km. Key sets may either be
unique per device, or used commonly by multiple devices. The CPRM License Agreement describes the details
and requirements associated with these two alternatives.

Each device receives n Device Keys, which are referred to as Kd_i (i=0,1,…,n-1). For each Device Key there is
an associated Column and Row value, referred to as Cd_i and Rd_i (i=0,1,…,n-1) respectively. Column and Row
values start at 0. For a given device, no two Device Keys will have the same associated Column value (in other
words, a device will have at most one Device Key per Column). It is possible for a device to have some Device
Keys with the same associated Row values. The number of Device Keys that are given to each device and the
range of Column and Rows values that are possible are defined separately for each device type in the
corresponding book of this specification.

A device shall treat its Device Keys as Highly Confidential, and their associated Row values as confidential, as
defined in the CPRM License Agreement.

3.1.2 Media Key Block (MKB)
CPRM’s cryptographic key management scheme uses the Media Key Block (MKB) to enable system
renewability. The MKB is generated by the 4C Entity, LLC, and allows all compliant devices, each using their
set of secret Device Keys, to calculate the same Km. If a set of Device Keys is compromised in a way that
threatens the integrity of the system, an updated MKB can be released that causes a device with the
compromised set of Device Keys to calculate a different Km than is computed by the remaining compliant
devices. In this way, the compromised Device Keys are “revoked” by the new MKB.

An MKB is formatted as a sequence of contiguous Records. Each Record begins with a one-byte Record Type
field, followed by a three-byte Record Length field. The Record Type field value indicates the type of the
Record, and the Record Length field value indicates the number of bytes in the Record, including the Record
Type and the Record Length fields themselves. Record lengths are always multiples of 4 bytes. The Record
Type and Record Length fields are never encrypted. Subsequent fields in a Record may be encrypted (by the
C2 cipher in ECB mode), depending on the Record Type.

Using its Device Keys, a device calculates Km by processing Records of the MKB one-by-one, in order, from
first to last. Except where explicitly noted otherwise, a device must process every Record of the MKB. The
device must not make any assumptions about the length of Records, and must instead use the Record Length
field value to go from one Record to the next. If a device encounters a Record with a Record Type field value it
does not recognize, it ignores that Record and skips to the next. For some Records, processing will result in the
calculation of a Km value. Processing of subsequent Records may update the Km value that was calculated
previously. After processing of the MKB is completed, the device uses the most recently calculated Km value as
the final value for Km (i.e. the output of Process_MKB in Figure 3-1).

If a device correctly processes an MKB using Device Keys that are revoked by that MKB, the resulting final Km
will have the special value 0000000000000016. This special value will never be an MKB’s correct final Km
value, and can therefore always be taken as an indication that the device’s keys are revoked. If a device
calculates this special Km value, it shall stop the authentication/playback/recording session in progress, and shall
not use that Km value in any subsequent calculations. Other device behavior in this situation is implementation
defined. As an example, a device could exhibit a special diagnostic code, as information to a service technician.

The following subsections describe the currently defined Record types, and how a device processes each.

CPRM Specification: Introduction and Common Cryptographic Elements, Revision 1.1

 4C Entity, LLC Page 3-3

3.1.2.1 Verify Media Key Record
Table 3-2 shows the format of a Verify Media Key Record.

Table 3-2 – Verify Media Key Record Format

Bit
Byte

7 6 5 4 3 2 1 0

0 Record Type: 8116
1

Record Length: 00000C16 2
3
4

Verification Data (Dv): C2_E(Km, DEADBEEF16 || XXXXXXXX16) :

11

A properly formatted MKB shall have exactly one Verify Media Key Record as its first Record. Bytes 4 through
11 of the Record contain the value

 Dv = C2_E(Km, DEADBEEF16 || XXXXXXXX16)

 where Km is the correct final Media Key value, and XXXXXXXX16 is an arbitrary 4-byte value.

The presence of the Verify Media Key Record in an MKB is mandatory, but the use of the Record by a device is
not mandatory.

As an optimization, a device may attempt to decrypt Dv using its current Km value during the processing of
subsequent Records, checking each time for the condition

 [C2_D(Km, Dv)]msb_32 == DEADBEEF16

 where Km is the current Media Key value.

If this condition is true, the device has already calculated the correct final Km value, and may therefore stop
processing the MKB.

Also (or alternatively), a device could check the same condition after processing the entire MKB, in order to
determine if it has calculated the correct final Km. Failure to calculate the correct Km after processing the entire
MKB could be the result of data or calculation errors, or of the device’s keys having been revoked (or both).
Note that these two cases can generally be distinguished, since a device with revoked keys that correctly
processes the MKB will calculate an incorrect final Km with the special value 0000000000000016.

CPRM Specification: Introduction and Common Cryptographic Elements, Revision 1.1

Page 3-4 4C Entity, LLC

3.1.2.2 Calculate Media Key Record
Table 3-3 shows the format of a Calculate Media Key Record.

Table 3-3 – Calculate Media Key Record Format

Bit
Byte

7 6 5 4 3 2 1 0

0 Record Type: 0116
1

Record Length 2
3
4

Reserved
5
6

Revision
7
8 Column
9

Generation: 00000116 10
11

En
cr

yp
te

d
K

ey
 D

at
a

12
Encrypted Key Data for Row 0 (Dke_0) :

19
20

Encrypted Key Data for Row 1 (Dke_1) :
27
28

.

.

.
:

Length-1

A properly formatted MKB shall have exactly one Calculate Media Key Record. Devices must ignore any
Calculate Media Key Records encountered after the first one in an MKB. The use of the Reserved field is
currently undefined, and it is ignored. The Revision field contains a 16-bit value, which is set to 000016 in
initial MKBs, and is incremented each time the revocation information released in MKBs is updated. The use
of the Revision field is defined in Section 3.1.3, and is not mandatory. The Generation field shall contain
00000116 for the first generation. The Column field indicates the associated Column value for the Device Key
to be used with this Record, as described below. Bytes 12 and higher contain Encrypted Key Data (possibly
followed by some padding bytes at the end of the Record, not shown in Table 3-3). The first eight bytes of the
Encrypted Key Data correspond to Device Key Row 0, the next eight bytes correspond to Device Key Row 1,
and so forth.

Before processing the Record, the device checks that both of the following conditions are true:

 Generation == 00000116

 and

 the device has a Device Key with associated Column value Cd_i == Column, for some i.

CPRM Specification: Introduction and Common Cryptographic Elements, Revision 1.1

 4C Entity, LLC Page 3-5

If either of these conditions is false, the device ignores the rest of the Record.

Otherwise, using the value i from the condition above, and r = Rd_i, c = Cd_i, the device calculates:

 Km = [C2_D(Kd_i, Dke_r)]lsb_56 ⊕ f(c,r)

 where Kd_i is the ith Device Key’s value and Dke_r is the 64-bit value starting at byte offset r × 8 within
the Record’s Encrypted Key Data. Unless explicitly noted otherwise in another book of this specification, f(c,r)
represents the 56-bit value

 f(c,r) = 000016 || c || 000016 || r

 where c and r are left-padded to lengths of 8 and 16 bits respectively, by prepending zero-valued bits to
each as needed. The resulting Km becomes the current Media Key value.

It is not necessary for a first generation device to verify that Record Length is sufficient to index into the
Encrypted Key Data. First generation devices are assured that the Encrypted Key Data contains a value
corresponding to their Device Key’s associated Row value.

3.1.2.3 Conditionally Calculate Media Key Record
Table 3-4 shows the format of a Conditionally Calculate Media Key Record.

Table 3-4 – Conditionally Calculate Media Key Record Format

Bit
Byte

7 6 5 4 3 2 1 0

0 Record Type: 8216
1

Record Length 2
3

En
cr

yp
te

d
C

on
di

tio
na

l
D

at
a

(D
ce

)

4
DEADBEEF16 (encrypted) :

7
8 Column (encrypted)
9

Generation: 00000116 (encrypted) 10
11

D
ou

bl
y

En
cr

yp
te

d
K

ey
 D

at
a

12
Doubly Encrypted Key Data for Row 0 (Dkde_0) :

19
20

Doubly Encrypted Key Data for Row 1 (Dkde_1) :
27
28

.

.

.
:

Length-1

CPRM Specification: Introduction and Common Cryptographic Elements, Revision 1.1

Page 3-6 4C Entity, LLC

A properly formatted MKB may have zero or more Conditionally Calculate Media Key Records. Bytes 4
through 11 of the Record contain Encrypted Conditional Data (Dce). If decrypted successfully, as described
below, bytes 4 through 7 contain the value DEADBEEF16, byte 8 contains the associated Column value for the
Device Key to be used with this Record, and bytes 9 through 11 contain a Generation value of 00000116 for the
first generation. Bytes 12 and higher contain Doubly Encrypted Key Data (possibly followed by some padding
bytes at the end of the Record, not shown in Table 3-4). The first eight bytes of the Doubly Encrypted Key
Data correspond to Device Key Row 0, the next eight bytes correspond to Device Key Row 1, and so forth.

Using its current Km value, the device calculates Conditional Data (Dc) as:

 Dc = C2_D(Km, Dce).

Before continuing to process the Record, the device checks that all of the following conditions are true:

 [Dc]msb_32 == DEADBEEF16

 and

 [Dc]lsb_24 == 00000116

 and

 the device has a Device Key with associated Column value Cd_i == [Dc]31:24 for some i.

If any of these conditions is false, the device ignores the rest of the Record.

Otherwise, using the value i from the condition above, and r = Rd_i, c = Cd_i, the device calculates:

d = C2_D(Km, Dkde_r)

where Dkde_r is the 64-bit value starting at byte offset r × 8 within the Record’s Doubly Encrypted Key
Data,

and then uses the resulting value d to calculate:

Km = [C2_D(Kd_i, d)]lsb_56 ⊕ f(c,r)

where Kd_i is the ith Device Key’s value. Unless explicitly noted otherwise in another book of this
specification, f(c,r) represents the 56-bit value

f(c,r) = 000016 || c || 000016 || r

where c and r are left-padded to lengths of 8 and 16 bits respectively, by prepending zero-valued bits to
each as needed. The resulting Km becomes the current Media Key value.

3.1.2.4 End of Media Key Block Record
Table 3-5 shows the format of an End of Media Key Block Record.

Table 3-5 – End of Media Key Block Record Format

Bit
Byte

7 6 5 4 3 2 1 0

0 Record Type: 0216
1

Record Length: 00000416 2
3

A properly formatted MKB shall contain an End of Media Key Block Record. When a device encounters this
Record it stops processing the MKB, using whatever Km value it has calculated up to that point as the final Km
for that MKB (pending possible checks for correctness of the key, as described previously).

CPRM Specification: Introduction and Common Cryptographic Elements, Revision 1.1

 4C Entity, LLC Page 3-7

3.1.3 Media Key Block Extension
In most cases, an MKB is placed on CPRM compliant media by the manufacturer, in such a way that it cannot
be altered or replaced. If a set of Device Keys is subsequently compromised, new media can be released
containing an updated MKB that causes the newly compromised set of Device Keys to calculate an incorrect Km,
thereby “revoking” its ability to work with the new media. For some CPRM applications on some media types,
Recording Devices may accelerate this revocation process by writing additional MKB Records (referred to
collectively as an MKB Extension) onto a writable area of the media. This MKB Extension is then treated as a
part of the original MKB for the purpose of calculating the Media Key (Km), as depicted in Figure 3-2.

Process_MKB

Device Keys

Media Key

(MKB || MKB Extension)

Figure 3-2 – Calculation of Media Key from MKB and MKB Extension

In this chapter, the MKB originally placed on the media by the manufacturer will be referred to as the Static
MKB. The combination of a Static MKB and an MKB Extension will be referred to as an Extended MKB (i.e.
Extended MKB = Static MKB || MKB Extension). In other books of this specification where applications that
support MKB Extensions are described, the term MKB may be used to refer to either a Static MKB alone, or an
Extended MKB.

MKB Extensions allow the use of system renewal information that comes from sources other than newly
manufactured media, such as via electronic music distribution. The other books of this specification indicate
which applications support MKB Extensions. The remainder of this section describes the additional rules and
procedures for writing MKB Extensions and processing Extended MKBs, for those cases where this feature is
supported.

3.1.3.1 Writing an MKB Extension
Even for CPRM applications where MKB Extensions are supported, the writing of an MKB Extension onto the
media by a Recording Device is not mandatory. If an MKB Extension is not already present on the media, the
Recording Device may write one. If an MKB Extension is already present, the Recording Device may replace it
with another MKB Extension.

Before writing an MKB extension, the Recording Device obtains a recent MKB, formatted as described in
Section 3.1.2, from an external source, such as via electronic music distribution. This MKB is referred to either
as the New MKB (since it is typically more recent than the Static MKB placed on the media by the
manufacturer) or as the MKB for MKB Extension, and is used in creating the MKB Extension as described
below.

For media types where the integrity of the Static MKB is verified in a robust manner, the Recording Device
may use a comparison of the Revision fields in the Calculate Media Key Records of both the Static and New
MKB in deciding whether to write/replace an MKB Extension. If the Revision field value in the New MKB is
not the higher of the two, then the New MKB is not truly more recent, and thus the Recording Device may
choose to save time by not using the New MKB to form an MKB Extension for that media.

For media types where the integrity of the Static MKB is not verified robustly, the decision to write an MKB
Extension must be made without regard to Revision fields, since otherwise the Revision field of the Static MKB
might be forged maliciously in order to prevent MKB Extensions being written. Since MKB Extensions do not
contain a Calculate Media Key Record (as described below), they cannot “enable” more Device Key sets than

CPRM Specification: Introduction and Common Cryptographic Elements, Revision 1.1

Page 3-8 4C Entity, LLC

were enabled by the Static MKB. Therefore, it is always safe to write an MKB Extension. The comparison of
Revision fields, where used, is only a performance optimization.

A Recording Device uses the following steps when writing (or replacing) an MKB Extension:

1) Calculate the Media Key (Km) of the Static MKB:

The Recording Device calculates the Km value for the media’s Static MKB in the usual way.

2) Modify the New MKB:

The Recording Device modifies the New MKB by changing its Calculate Media Key Record into a
Conditionally Calculate Media Key Record, as follows:

a) Change the Record Type field value from 0116 to 8216.

b) Change the value in bytes 4 through 7 (the Reserved and Revision fields) to DEADBEEF16.

c) Change the value in bytes 4 through 11 to an Encrypted Conditional Data (Dce) value:

Treating bytes 4 through 11 as a Conditional Data (Dc) value, use the Km value from Step 1 to calculate
an Encrypted Conditional Data (Dce) value as

Dce = C2_E(Km, Dc),

and then replace Dc with Dce.

d) Change Encrypted Key Data to Doubly Encrypted Key Data:

Starting at byte 12, replace every Encrypted Key Data (Dke_i) value with a corresponding Doubly
Encrypted Key Data (Dkde_i) value, calculated using Km from Step 1 above as follows:

Dkde_0 = C2_E(Km, Dke_0),

Dkde_1 = C2_E(Km, Dke_1),

…

In this step, the Recording Device shall not make any assumptions about the number of Encrypted Key
Data values in the Record, and shall instead use the Record Length field to determine how many
Encrypted Key Data values are to be replaced. In other words, starting at byte 12, the Recording
Device encrypts data in sequential 8-byte blocks until the end of the Record is reached. If the Record
ends with a block of data less than 8 bytes long, that block is left unmodified.

3) Write modified New MKB as MKB Extension:

The New MKB, as modified in Step 2 above, is written to the media as the MKB Extension (possibly
replacing a previous MKB Extension). The specific location or file where the MKB Extension is stored is
defined for each application and media type in the corresponding book of this specification. Note that
MKB Extensions may be stored as normal read/write files.

Writing/replacing an MKB Extension changes the Km value, and thus the Kmu value, for the application(s) using
that MKB Extension. Therefore, if CPRM protected content is already present on the media when an MKB
Extension is to be written, the Recording Device must decrypt any data belonging to the affected application(s)
that was previously encrypted with the old Kmu, and re-encrypt it using the new Kmu, as part of the process
outlined above. Typically, applications that support MKB Extensions use Kmu to encrypt title keys, and in turn
use those title keys to encrypt the content itself. In such cases, only the encrypted title keys must be decrypted
and re-encrypted as just described. Note that if multiple applications share a common MKB Extension on a
given media (stored in a common location or file), a convention should be used that allows a Recording Device
to locate the title keys for all of those applications when it writes an MKB Extension. Alternatively, different
applications may use different MKB Extensions (stored in separate locations or files). Such details are
described for each application in the corresponding books of this specification.

CPRM Specification: Introduction and Common Cryptographic Elements, Revision 1.1

 4C Entity, LLC Page 3-9

3.1.3.2 Processing an Extended MKB
All Playback and Recording Devices used for applications where MKB extensions are supported must
recognize and use an MKB Extension if one is present. This applies even to such a Recording Device that is not
capable of writing MKB extensions. Since writing MKB Extensions is not mandatory, even for applications
where they are supported, MKB processing shall proceed as usual if no MKB Extension is present (i.e. it is not
considered an error if an MKB Extension is not present).

When an MKB Extension is present, devices treat the Static MKB and MKB Extension as if they were a single
MKB (referred to as the Extended MKB) for the purpose of calculating Km. The Records of the Static MKB are
processed first, followed by the Records of the MKB Extension. The procedure is identical to that described in
Section 3.1.2, with the following exceptions:

• The Extended MKB has two Verify Media Key Records and two End of Media Key Block Records, one
each in the Static MKB and MKB Extension. When processing the Static MKB, the End of Media Key
Block Record (or Verify Media Key Record, if it is used to stop processing early) is used as a signal to begin
processing the MKB Extension.

• Recording Devices shall always use the Verify Media Key Record in the MKB Extension to verify
calculation of the correct Km value. If the final Km value is not successfully verified, the Recording Device
shall erase the MKB Extension. This ensures that an invalid MKB Extension does not permanently disable
the media for CPRM use.

Note that devices processing an Extended MKB must ignore any additional Calculate Media Key Records
encountered after the first one in the Static MKB. The MKB Extension should not contain a Calculate Media
Key Record, and if one is encountered there, a device must ignore it.

3.1.4 Pseudo-code for Processing a Media Key Block
To help clarify the procedure for calculating the Media Key (Km) from a Media Key Block, this section
provides pseudo-code examples for processing both Static and Extended Media Key Blocks. The pseudo-code
provided here shall not be considered definitive; other methods of processing Media Key Blocks that meet the
requirements described in this chapter are possible.

The pseudo-code assumes that the following subroutines are available:

• decrypt(key, data) - returns the "double word" (8 byte) result from decryption using C2 in ECB mode.
(Parameters 'key' and 'data' are also double words.)

• getByte() - returns the next byte in the Media Key Block.

• getDoubleWord() - returns the next 8 bytes in the Media Key Block.

• skip(bytes) - advances the current position in the Media Key Block by that number of bytes.

Furthermore, there are external arrays ‘deviceKey’ (16 double words), and ‘row’ (16 integers). These arrays are
indexed by Column values, and contain, respectively, the Device Key values and associated Row values
assigned to the particular device (this example assumes a case where the MKB has 16 Columns defined, and the
device is assigned one Device Key for each Column).

Note that if the Media Key Block is for some reason found incorrectly formatted (e.g. the End of Media Key
Block Record is missing, or a Record Length value is out of range), the getByte() or getDoubleWord()
functions might return an “end-of-file” indication. For some media types, the MKB will have an associated
length indicator (stored outside of the MKB), which could be used to prevent the skip() routine from advancing
past the end of the MKB.

CPRM Specification: Introduction and Common Cryptographic Elements, Revision 1.1

Page 3-10 4C Entity, LLC

The following pseudo-code fragment illustrates the two steps in processing a Media Key Block when an MKB
Extension is present:

 double word mediaKey;
 set input source to the Static MKB;
 mediaKey = processMediaKeyBlock(nil);
 if there is an MKB Extension then
 set input source to the MKB Extension;
 mediaKey = processMediaKeyBlock(mediaKey);
 endif

The following is the “processMediaKeyBlock” routine:

procedure processMediaKeyBlock(
double word mediaKey) /* incoming media key, (or nil) */

 returns double word; /* media key or 'nil' */
{

 integer recordType; /* type of each record */
 integer column; /* column in device key matrix */
 integer length; /* length of the record */
 double word verificationData; /* for verifying media key */
 double word buffer; /* temporary buffer */

 do forever {

 recordType = getByte();
 if no more data in the media key block
 then
 return mediaKey; /* missing End record -- ignore */
 endif

 /* read record length, and set length to remaining bytes: */
 length = (getByte() << 16) + (getByte() << 8) + getByte();
 length = length – 4;

 if length >= 8
 then
 buffer = getDoubleWord();
 length = length - 8;
 else if length < 0
 then
 length = 0; /* ignore bad length */
 endif
 endif

 switch based on recordType {

 case 0x82: /* Conditionally Calculate Media Key record */

 buffer = decrypt(mediaKey, buffer);

 if the first four bytes of buffer are not 0xDEADBEEF
 then
 exit switch;
 endif

 /* join next case below: */

 case 0x01: /* Calculate Media Key record */

 column = the fifth byte of the buffer
 /* (column numbers start at 0) */
 if the last three bytes of buffer are not 0x000001

 OR column >= 16

CPRM Specification: Introduction and Common Cryptographic Elements, Revision 1.1

 4C Entity, LLC Page 3-11

 then
 exit switch; /* ignore, not an error */
 endif

 if (row[column]+1)*8 > length
 then
 exit switch; /* ignore, not enough data,
 not an error */
 endif

 /* skip the cells up to the one I'm interested in: */
 skip(row[column] * 8); /* note rows start at 0! */

 /* get the cell and update the length */
 buffer = getDoubleWord();
 length = length - 8 - row[column] * 8;

 if recordType == 0x82
 then
 buffer = decrypt(mediaKey, buffer);
 else
 if mediaKey is not nil
 then

exit switch; /* must enforce only one CMK record! */
 endif
 endif

 mediaKey = decrypt(deviceKey[column], buffer);

/* Verifying the media key as shown below is not mandatory.
 However, recording devices must try to verify the media key
 in MKB Extensions, and if ultimately unsuccessful, delete the MKB
 Extension (case not shown here). */

buffer = decrypt(mediaKey, verificationData);

 if the first four bytes of buffer are 0xDEADBEEF
 then
 return mediaKey;

 endif

 exit switch;

 case 0x02: /* End of Media Key Block record */
 return mediaKey;

 case 0x81: /* Verify Media Key record */
 verificationData = getDoubleWord();
 exit switch;

 default case: /* it is important to ignore unknown records, for the future! */
 exit switch;

 }

 skip(length); /* advance to next record */

 }
}

The function returns 'nil' in the case of certain errors, although most errors are deliberately ignored. Since the
Media Key value '0' can be used to detect that the device has been revoked, ‘nil’ might be some condition other
than ‘0.’

CPRM Specification: Introduction and Common Cryptographic Elements, Revision 1.1

Page 3-12 4C Entity, LLC

3.2 Calculation of the Media Unique Key (Kmu)

3.2.1 Media Identifier (IDmedia)
Each piece of CPRM compliant media (or in some cases, playback device) shall contain an individual identifier
that is readable. This identifier does not need to be secret, but must be stored in a manner that prevents it from
being altered or replaced, unless otherwise specified elsewhere in this specification. If an identifier is 64 bits
long, its value can be used directly as IDmedia. For cases where the identifier is not 64 bits long, a function shall
be defined in the corresponding book of this specification to convert that identifier to a 64-bit value to be used
as IDmedia.

3.2.2 Media Unique Key (Kmu)
CPRM’s cryptographic key management uses a Media Unique Key (Kmu) to bind encrypted content to the
media (or in some cases, device) on which it will be played back. Kmu is calculated using the IDmedia and the
previously calculated Km, as follows:

 Kmu = [C2_G(Km, IDmedia)]lsb_56.

The specific use of Kmu in the process of calculating encryption and decryption keys for content varies with
different applications and media types, as described in the corresponding books of this specification.

CPRM Specification: Introduction and Common Cryptographic Elements, Revision 1.1

 4C Entity, LLC Page 4-1

Chapter 4
Common Cryptographic Functions for

Enhanced CPRM
4. Introduction
This chapter specifies additional common cryptographic functions based on the AES cipher for implementing
AES extensions to CPRM for various applications and media types, which is denoted AES-CPRM. The original
version of CRPM is denoted C2-CPRM.

The AES-CPRM protects Content, Title Keys/Content Keys/User Key, CCI/Usage Rules and other data
specified in this specification as protected with the AES cipher. Unless explicitly stated in this specification, the
remaining data and procedures, such as authentication between a device and an SD Memory Card, continue to
be protected by the C2-CPRM.

4.1 AES Block Cipher Algorithm
Common cryptographic functions used for AES-CPRM are based on the AES block cipher. A description of
the AES block cipher algorithm is provided in FIPS Publication 197, as referenced in Section 1.4. Three block
cipher modes, Electronic Codebook (ECB) mode, Cipher Block Chaining (CBC) mode and Counter (CTR)
mode, which are used for AES-CPRM are provided in NIST Special Publication 800-38A, as referenced in
Section 1.4. The remainder of this section describes notation that will be used in this document and in other
books of this specification to refer to those three modes of operation.

4.1.1 AES Block Cipher in Electronic Codebook (ECB) Mode
In this document and in other books of this specification, encryption with the AES cipher in Electronic
Codebook (ECB) mode is represented by the function

 AES_E(k, d)

 where k is a 128-bit key, d is a 128-bit value to be encrypted, and AES_E returns the 128-bit result.

Decryption using the AES cipher in ECB mode is represented by the function

 AES_D(k, d)

 where k is a 128-bit key, d is a 128-bit value to be decrypted, and AES_D returns the 128-bit result.

4.1.2 AES Block Cipher in Cipher Block Chaining (CBC) Mode
The AES cipher may be used in Cipher Block Chaining (CBC) mode for encryption and decryption of content
protected by AES-CPRM. In this document and in other books of this specification, encryption with the AES
cipher in CBC mode is represented by the function

 AES_ECBC(k, d)

where k is a 128-bit key, d is a frame of data to be encrypted, and AES_ECBC returns the encrypted
frame.

Decryption using the AES cipher in CBC mode is represented by the function

 AES_DCBC(k, d)

where k is a 128-bit key, d is a frame of data to be decrypted, and AES_DCBC returns the decrypted
frame.

CPRM Specification: Introduction and Common Cryptographic Elements, Revision 1.1

Page 4-2 4C Entity, LLC

The size of the frame of data to be encrypted or decrypted (i.e. how often a new CBC cipher chain is started)
depends on the particular application format, and is defined for each in the corresponding books of this
specification. The initialization vector used at the beginning of a CBC encryption or decryption chain is a
constant and specified in the corresponding books of this specification as Confidential Information, as defined
in the CPRM License Agreement.

4.1.3 AES Block Cipher in Counter (CTR) Mode
The AES cipher may be used in Counter (CTR) mode for encryption and decryption of content protected by
AES-CPRM. In this document and in other books of this specification, encryption with the AES cipher in CTR
mode is represented by the function

 AES_ECTR(k, d)

where k is a 128-bit key, d is a frame of data to be encrypted, and AES_ECTR returns the encrypted
frame.

Decryption using the AES cipher in CTR mode is represented by the function

 AES_DCTR(k, d)

where k is a 128-bit key, d is a frame of data to be decrypted, and AES_DCTR returns the decrypted
frame.

The size of the frame of data to be encrypted or decrypted depends on the particular application format, and is
defined for each in the corresponding books of this specification. The value of initial counter block used at the
beginning of a CTR encryption or decryption chain (or method to generate the initial counter value) is specified
in the corresponding books of this specification. This information is considered Confidential Information, as
defined in the CPRM License Agreement. The counter for CTR mode shall be incremented by one (1) for every
block encountered using the Standard Incrementing Function as specified in Appendix B.1 of NIST Special
Publication 800-38A , unless otherwise specified in the other corresponding application books of this
specification. Given a sequence of counters, T1, T2, …, Tn, the each value of counter block shall be calculated as
follows (T1 is the value of initial counter block):

 Tj+1 = (Tj + 1) mod 2128 for j = 1, 2, …, n-1

4.2 AES Hash Function
AES-CPRM uses a hashing procedure based on the AES encryption algorithm. This procedure is called the
AES Hash Function, and is represented by the function

 AES_H(d)

 where d is input data of arbitrary length, and AES_H returns the 128-bit result.

Prior to hashing, the data to be hashed (d) is padded using the method as described in the following sentences.
The message or data file is considered to be a bit string. The length of the message is the number of bits in the
message (the empty message has length 0). The purpose of message padding is to make the total length of a
padded message an integer multiple of 128 bits. The AES hash sequentially processes blocks of 128 bits when
computing the message digest. The following specifies how this padding shall be performed. As a summary, a
"1" followed by m "0"s followed by a 64-bit integer are appended to the end of the message to produce a
padded message of length 128 × n. The 64-bit integer is the length of the original message in bits. The length of
padding is at least 65 bits ("1" || the 64-bit integer) and at most 192 bits ("1" || 127 "0"s || the 64-bit integer.). By
way of example, a 56-bit message would be padded with 72 bits as follows: 80000000000000003816. A 64-bit
message would be padded with 192 bits as follows: 80…04016. A 128-bit message would be padded with 128
bits as follows: 80…08016.

The padded data d’ is divided into n 128-bit blocks, represented as d1’ ,d2’ ,…dn’, which are used in the hashing
procedure as shown in Figure 4-1.

CPRM Specification: Introduction and Common Cryptographic Elements, Revision 1.1

 4C Entity, LLC Page 4-3

Figure 4-1 – AES Hash Function

A 128-bit fixed initial value h0 is provided by the 4C Entity, LLC for media types and applications where the
AES Hash Function is used.

The following are calculated iteratively for i from 1 to n:

 hi = AES_D(di’, hi-1) ⊕ hi-1’.

The value hn is the final result of the hash, i.e. AES_H(d) = hn.

AES_D
128

128

128

128

hi

di'

hi-1

CPRM Specification: Introduction and Common Cryptographic Elements, Revision 1.1

Page 4-4 4C Entity, LLC

4.3 AES One-way Function
AES-CPRM uses a cryptographic one-way function based on the AES encryption algorithm. This function is
called the AES One-way Function, and is represented by

 AES_G(d1, d2)

 where d1 is a 128-bit input value, d2 is a 128-bit input value, and AES_G returns the 128-bit result.

Figure 4-2 depicts the one-way function.

Figure 4-2 – AES One-way Function

The one-way function result is calculated as

 AES_G(d1, d2) = AES_D(d1, d2) ⊕ d2.

4.4 Message Authentication Code (CMAC)
AES-CPRM uses a Cipher-based Message Authentication Code (CMAC) based on the AES encryption
algorithm to generate a Message Authentication Code (MAC), as defined in the National Institute of Standards
and Technology Special Publication 800-38B. This function is called the CMAC, and is represented by
 M = CMAC(k, d)

 where k is a 128-bit key to be used to create the MAC, d is the data to be authenticated in arbitrary
length, and M is a resulting MAC in 128-bit length.

AES_D
128

128

128

128

AES_G(d1, d2)

d1

d2

CPRM Specification: Introduction and Common Cryptographic Elements, Revision 1.1

 4C Entity, LLC Page 4-5

4.5 Random Number Generators
This section describes a random number generator and a pseudorandom number generator for generating
random values of more than 64 bits (i.e. including 128 bits), both of which are based on the AES One-way
Function. Unless explicitly noted otherwise, one or more of the following random/pseudorandom number
generators shall be used: (1) Pseudorandom number generator based on a design described in either Section
4.5.1 or Section 4.5.2 as described below; (2) Pseudorandom number generators defined in NIST Special
Publication 800-90; (3) Random or pseudorandom number generator of equal or higher quality that passes the
tests described in NIST Special Publication 800-22 when using the default parameters and other
recommendations provided therein.

4.5.1 AES Random Number Generator
Figure 4-3 shows the AES Random Number Generator, which is a random number generator based on the AES
One-way Function that uses a non-correlated input in every cycle.

Figure 4-3 – AES Random Number Generator

Manufacturers need to generate a unique value, s0, for each device. During manufacture, the s0 is loaded into the
non-volatile seed register. Thereafter, 128-bit random numbers ri (i=0,1,…) are generated as

 ri = AES_G(ki, si),

 where ki = f(k, ei)

and si+1 = ri.

The function f(k, ei) returns the value k after its least significant bit is exclusive-ORed with ei.

The constant k is a 128-bit value generated individually for each device by a physically random process. This
may be taken from the random number provided for each device by the 4C Entity, LLC. The 1-bit value ei is
taken from a source of run-time entropy, such as the least significant bit of a free-running counter having a
frequency significantly higher than the random number sample rate.

Unless explicitly noted otherwise, a device shall treat its k value as Highly Confidential, as defined in the
CPRM License Agreement.

AES_G

128

Non-volatile
seed register

128

k

si

Initial value (s0) loaded during
manufacture

128

128

ri

ei

ff
128

ki

1

CPRM Specification: Introduction and Common Cryptographic Elements, Revision 1.1

Page 4-6 4C Entity, LLC

4.5.2 AES Pseudorandom Number Generator
Figure 4-4 shows the AES Pseudorandom Number Generator, which is a pseudorandom number generator
based on the AES One-way Function that generates an output sequence with a period of length 2128.

Figure 4-4 – AES Pseudorandom Number Generator

Manufacturers need to generate a unique value, s0, for each device. During manufacture, the s0 is loaded into the
non-volatile seed register. Thereafter, 128-bit random numbers ri (i=0, 1, …) are generated as

 ri = AES_G(k, si)

 where si+1 = [si + 1]lsb_128

The constant k is a 128-bit value generated individually for each device by a physically random process. This
may be taken from the random number provided for each device by the 4C Entity, LLC. Unless explicitly noted
otherwise, a device shall treat its k value as Highly Confidential, as defined in the CPRM License Agreement.

AES_G

128

non-volatile

seed register

128

k

si

Initial value (s0) loaded

during manufacture

128

128

ri

+ 1

128

CPRM Specification: Introduction and Common Cryptographic Elements, Revision 1.1

 4C Entity, LLC

This page is intentionally left blank.

