Electronics Night: Basic AC Analysis

(slides will not be a regular feature)

Capacitor: current leads

 voltage by 90 degrees$$
\begin{array}{ll}
V(t)=\sqrt{2} \sin (2 \pi t) \mathrm{V} & (1 \mathrm{~V}-\mathrm{rms}) \\
I(t)=C \frac{d V(t)}{d t}
\end{array}
$$

$$
\frac{d V(t)}{d t}=2 \sqrt{2} \pi \cos (2 \pi t)
$$

A capacitor resists changes in voltage by storing energy in an electric field

FIGURE 2.6
Step input is applied to a simple RC circuit.

$$
V o=V i\left(1-e^{-\frac{\tau}{r c}}\right)
$$

Reaches 63\% of steady state voltage in one time constant

An inductor resists changes in current by storing energy in a magnetic field

Reactance

FIGURE 2.31
Graph of current over frequency for a cap and an inductor.

Impedance

Real part: resistance
Imaginary part: reactance
Magnitude: voltage/current
Angle: voltage phase shift

This is essentially frequency domain analysis

$$
\begin{gathered}
X_{C}=500 \Omega, \quad R=1 \mathrm{k} \Omega, \quad X_{L}=250 \Omega \\
X=X_{L}-X_{C}=-250 \Omega \\
\theta=-\sin ^{-1}(250 / 1000)=-14^{\circ}
\end{gathered}
$$

Voltage lagging current 14 degrees
Depends on frequency!

Resonance

At the resonant frequency, capacitive reactance equals inductive reactance

$$
\begin{gathered}
2 \pi f L=\frac{1}{2 \pi f C} \\
f=\frac{1}{2 \pi \sqrt{L C}}
\end{gathered}
$$

Example

The resonant frequency of a series RLC circuit if R is $22 \mathrm{ohms}, \mathrm{L}$ is 50 microhenrys and C is 40 picofarads is 3.56 MHz. (E5A14)
$\mathrm{f}=1 / 2 \pi \sqrt{ }(\mathrm{LC})=1 / 6.28 \mathrm{x} \sqrt{ }\left(50 \times 10^{-6} \mathrm{x}\right.$ 40×10^{-12}) $=1 / 2.8 \times 10^{-7}=\mathbf{3 . 5 6} \mathbf{~ M H z}$

General solution method

$$
\begin{gathered}
v_{i}=V_{i} \cos \left(\omega_{1} t\right) \quad \text { for } t \geq 0, \\
v_{i}=v_{c}+R C \frac{d v_{c}}{d t} .
\end{gathered}
$$

Homogenous solution:

$$
R C \frac{d v_{c h}}{d t}+v_{c h}=0 . \quad v_{c h}=K_{1} e^{-t / R C}
$$

Particular solution:

Complete solution (steady state):

$$
v_{c}=\frac{V_{i}}{\sqrt{1+\left(\omega_{1} R C\right)^{2}}} \cos \left(\omega_{1} t+\Phi\right)
$$

$$
v_{c} \simeq \frac{V_{i}}{\omega_{1} R C} \cos \left(\omega_{1} t-90^{\circ}\right)
$$

Filters

FIGURE 2.33
Inductor-based low-pass filter.

FIGURE 2.32

Cap-based low-pass filter.

Low pass RC filter

(a) Circuit
(b) Impendance model
(s is shorthand for $2 i \pi f$)
Voltage divider:

$$
V_{o}=\frac{\frac{1}{C s}}{R+\frac{1}{C s}} V_{i}=\frac{1 / R C}{s+1 / R C} V_{i}
$$

Gain: $\quad H(2 i \pi f)=\frac{V_{o}}{V_{i}}=\frac{1 / R C}{2 i \pi f+1 / R C}$
What happens at low frequencies?
What happens at high frequencies?

